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1 INTRODUCTION  
The main objective of the analysis work performed in the framework of the Work Package 4 
of the DaCoTA project is to analyse the past evolution of the annual number of fatalities in 
the various member states, and to forecast this evolution up to 2020. The model applied for 
many countries was the Latent Risk Model, which defines the development of the annual 
numbers of fatalities as the result of the joint development of exposure and risk (see Bijleveld 
et al., 2008; Martensen & Dupont, 2010). Because it involves the simultaneous modelling of 
the risk and exposure trends, the LRT is a multivariate (bivariate) Time Series model.  

In this report, demonstration is made of the usefulness and appropriateness of multivariate 
time series models to further improve the analysis of the developments of annual fatality 
numbers by exploring models (1) integrating the fatality time series of a panel of countries, 
(2) handling the trends of fatality numbers for subgroups of road-users and for various 
accident types simultaneously, and (3) including economic variables such as GDP.  

The simultaneous modelling of multiple trends implies that attention is paid to possible 
correlations between the random variations of the trend components (level, slope among 
others). When these correlations are high, the components in question are said to be 
common for the different trends modelled. The identification of common components is 
important because it allows the improvement of models to make them more efficient, but also 
because common components are informative in themselves of the dynamics governing the 
evolution of the trends considered.  

In the next section, the notion of “correlation between the random variations of the 
components of different trends” is formally related to concepts that are fundamental in Time 
Series analysis, such as the concepts of stationarity, integration and co-integration. This is 
described on the basis of the results of the investigation of the correlations between fatality 
and exposure time series that has been conducted previously for the different member 
states.  

A first multivariate Time Series application is then presented and discussed, namely, the 
simultaneous analysis of the development of annual fatality series for the various member 
states – or subgroups of member states by means of macro panel data analysis. After having 
exposed the principles underlying the technique, an example application is presented for the 
development of fatality numbers in France and in the United Kingdom.   

The next section describes how the multivariate time series framework can be applied to fit a 
disaggregated model of the fatality trends for subgroups of road users (defined on the basis 
of age, gender, transport mode and others). This allows identifying subgroups of road users 
for which the evolution of fatality numbers is governed by common processes or 
components, and also subgroups for which this evolution appears problematic (or not as 
encouraging as that of others). An example is then provided: the model of the evolution of 
the number of fatalities for 6 different age groups in Spain, taking into account the evolution 
of the size of the population. A second application explores the relationship between the 
number of fatalities and GDP on a macropanel of 30 countries and shows how to articulate 
short-term and long-term variations between them in a coherent time series model. 
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2 LESSONS LEARNED FROM UNIVARIATE 
AND BIVARIATE MODELS 

2.1 Stationarity and order of integration 
Stationarity is a fundamental assumption in some types of time series models (e.g., ARMA 
models). A time series is called stationary if the process generating the time series fluctuates 
around a constant value (the underlying mean), independent of time, and if the variance of 
the fluctuation remains essentially constant over time. When the stationarity assumption is 
met, the mean or variance of the series can be considered meaningful sample statistics, and 
can consequently be used to predict future behaviour of the process under investigation. 
Stationarity is, however, no natural property of most natural time series (e.g. economics), and 
those that are used in the road safety field are no exception (especially when the number of 
years of observation is large, e.g, >20). The number of fatalities, for example, has been 
continuously declining in most EU member states, while the number of vehicle-kilometres 
has been continuously increasing (see Dupont & Martensen, 2012). Thus, the means of the 
two series cannot be considered constant over time. Previous analyses performed in the 
Work Package have also shown that, for most countries, at least one component of the 
fatality trend (the level most often, but the slope as well in some cases) significantly varies 
over time.  

In many cases, a series can be made stationary by means of differencing: the variable is 
expressed as being a function of its own value at previous time points. The order of 
integration of a series summarises the number of differences that is necessary for the series 
to become stationary and is denoted /(d). A series that is already stationary is denoted I(0). 
In the other cases, a univariate time series Yt is said to be integrated of order d, denoted by 
I(d), if it needs to be differenced d times to make it stationary.  

If a time series is I(1), then it can be analyzed with a local level model (LLM: the level of the 
series is defined as random, there may or may not be a deterministic slope in the model). It 
can indeed be shown that such a series needs to be differenced only once in order to make it 
stationary. If a time series is I(2), then it must be analyzed with a local linear trend model 
(LLTM: stochastic level and slope) or a smooth trend model (STM: fixed level and stochastic 
slope), as it can be shown that such a series needs to be differenced twice in order to make 
it stationary, see Commandeur and Koopman (2007, p.132-133) for details. 

For the European countries analysed, most of the fatalities time-series are integrated of order 
2 [i.e. I(2)], and modelled by a local linear trend model; same for exposure time series, when 
available. 

 

2.2 Cointegration between exposure and fatalities 
One of the main objectives of this Work Package was to apply a bivariate model to the 
developments of annual fatality numbers in the different member states, taking the 
development of exposure into account. As we use multivariate structural models with 
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unobserved components of the trends, such as the level and the slope, which are random 
walks and so integrated of order 1 I(1), the main point of the modelling is to assess the 
importance of the correlation between the random disturbances of the levels and the slopes 
of the trends of both time series. 

If µt is a level we have 

 µt - µt-1 = ξt 

and ξt is the random disturbance which follows a normal distribution with mean 0 and 
variance σ2. 

We have seen that the disturbances of the unobserved level components of the fatalities and 
mobility can be correlated and that the disturbances of the unobserved slopes components of 
the fatalities and mobility can be correlated as well. 

When such a correlation happens to be (close to) plus or minus one, then we have the 
special situation that the level and/or slope components are -as is said- common. When 
unobserved components are common this means that the changes or “shocks” driving the 
dynamics of the (two or multiple) time series are perfectly linearly related. Stated differently, 
the level and/or slope components then change in the same way at the same points in time, 
and the corresponding time series therefore display common behaviour. 

There is an intimate relation between common factor models and what is known in the time 
series literature as cointegration. First, we will provide a short introduction into the concept of 
cointegration. 

In that case we cannot explore relationship between both time-series by means of a classical 
linear regression, because such a regression is valid only between stationary time-series. 
The way to deal with such a problem is to explore the cointegration between time-series. 

If two series Y1t andY2t are both I(d), then any linear combination (Y1t - αY2t) of the two series 
will usually be I(d) as well. However, if two series Y1t and Y2t are both integrated of order d, 
and a linear combination of the two series, (Y1t - βY2t) say, exists for which the order of 
integration is less than or equal to d, say (d-b), then the two series are said to be 
cointegrated of order (d,b), which is denoted by CI (d,b). CI(2,2) means that there exists a 
linear relationship of two integrated time-series of order 2 which is stationary I(0). We could 
extend this definition when a linear combination involving a linear deterministic trend (Y1t - 
βY2t-(a+ct)) is trend stationary I(0) (Hendry and Juselius, 2000). 

As often fatalities and exposure time-series are I(2), we are looking for a cointegration of 
order 2 with a trend stationarity, because it gives a long-term linear relationship between the 
logarithms of the number of fatalities and exposure such that: 

Log FATt = βLogEXPt + a +ct + εt 

This may sound pretty obscure, but translated in structural time series terminology all this is 
actually quite familiar. First of all, consider two time series both integrated of order 1 (see 
Table 1), meaning that both series can be modelled with a local level model or a local level 
with fixed slope model. If the two series are CI(1,1), then this is the same as saying that a 
bivariate local level model or a bivariate local level with fixed slope model applied to both 
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series would reveal that the correlation between the level disturbances of the two series is 
(close to) plus or minus one, which implies that the two series have common levels.  

  Y2t 

  I(1) = LLM I(2) = LLTM or STM 

 

Y1t 

I(1) = LLM CI(1,1) = I(0)  

I(2) = LLTM or STM 
 CI(2,1) = I(1) 

CI(2,2) = I(0) 

Table 1: Types of cointegration for two time series integrated of order 1and 2 

Next, consider two time series both integrated of order 2 (Table 1), meaning that both series 
can be modelled with a local linear trend or a smooth trend model. There are now two 
possibilities: If the two series are CI(2,1), then this is the same as saying that a bivariate local 
linear trend model or a bivariate smooth trend model or a bivariate local linear and smooth 
trend model applied to both series reveals that the correlation between the slope 
disturbances of the two series is (close to) plus or minus one, implying that the two series 
have common slopes. 

If the two series are CI(2,2), on the other hand, then this is the same as saying that a 
bivariate local linear trend model applied to both series reveals that the correlation between 
the slope disturbances of the two series is (close to) plus or minus one, and that the 
correlation between the two level disturbances is (close to) plus or minus one, implying that 
the two series have common trends (i.e., both common slopes and common levels). 

2.3 LRT as a bivariate common factor model 
An exploration of the correlation between the slope disturbances of the exposure and fatality 
series in the different member states has been carried out by means of SUTSE (Seemingly 
Unrelated Time Series Equations) models. Details of the results can be found in Deliverable 
4.4 of the DaCoTA project. SUTSE models are bivariate structural models with a complete 
variance-covariance structure of the disturbances of the slopes, levels, and irregulars of both 
of the logarithms of the annual numbers of fatalities and vehicle*kilometers: 

e
ttt umeTrafficVolLevelumeTrafficVol ε+= )(loglog  

e
tttt umeTrafficVolSlopeumeTrafficVolLevelumeTrafficVolLevel ξ++= −− 11 )(log)(log)(log

e
ttt umeTrafficVolSlopeumeTrafficVolSlope ζ+= −1)(log)(log  

f
ttt FatLevelFatalities ε+= )(loglog  

f
tttt FatalitiesSlopeFatalitiesLevelFatalitiesLevel ξ++= −− 11 )(log)(log)(log  

f
ttt FatalitiesSlopeFatalitiesSlope ζ+= −1)(log()(log(  
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Of course, this model was only applicable to the extent that exposure data were available for 
the different countries analysed.  

The analyses conducted revealed that, when exposure data are available, there is a 
correlation between the stochastic slopes of the trends of both time-series, which means that 
they have a common slope or that they are cointegrated. Secondly, the exposure trend most 
often appeared to be a smooth trend, that is, a trend with a fixed level and a stochastic slope. 
The number of fatalities, on the other hand, had a fixed level in most instances. In that case, 
there is no possibility of a common level. The correlations between the slope disturbances of 
the two series were used to define the model in the next step of the analyses, as explained 
below.  

In a next step, the risk (the number of fatalities per billion vehicle kilometres) was introduced 
in the model as an unobserved trend with a level and a slope. The reason is that risk is the 
major indicator of safety performance. This model is consequently referred to as to the Latent 
Risk Trend model (LRT), see Bijleveld et al. (2008). It is a multivariate model which can have 
as common factor the trend of exposure 

e
ttt umeTrafficVolLevelumeTrafficVol ε+= )(loglog  

e
tttt umeTrafficVolSlopeumeTrafficVolLevelumeTrafficVolLevel ξ++= −− 11 )(log)(log)(log  

e
ttt umeTrafficVolSlopeumeTrafficVolSlope ζ+= −1)(log)(log  

 

f
tttt RiskLevelumeTrafficVolLevelFatalities ε++= )(log)(log)log(  

r
tttt RiskSlopeRiskLevelRiskLevel ξ++= −− 11 )(log)(log)(log  

r
ttt RiskSlopeRiskSlope ζ+= −1)(log)(log  

The LRT model is chosen related to the estimated value of the correlation between the slope 
disturbances. 

When the correlation is null, there is no relationship between fatalities and exposure. 
Knowing exposure does not bring any additional information to predict the number of 
fatalities. In that case, a univariate LLT model is appropriate. When the correlation between 
the slope disturbances is equal to 1 and the level components are deterministic, both time-
series share the same stochastic slope and are trend stationary with a deterministic linear 
trend for the risk. By constraining the beta coefficient for exposure to 1, we get an LRT 
model. It remains to demonstrate that there is a class of equivalence of models by showing 
that the elasticity coefficient β is a linear function of the risk deterministic slope c. 
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When the correlation takes a medium value, then there is a weak correlation between the 
two time-series and an LRT provides a solution through the estimation of a relationship this 
time between risk and exposure. 

The relationship between the observations made on the correlations between the exposure 
and fatality trends and the type of model adopted is detailed in Table 2.  

 

Type of correlation 
between the slope 
disturbances 

0: 

No correlation 

1: 

Full Correlation 

0.1 to 0.9: 

Medium correlation 

Relationships Independence between 
fatalities and exposure 

Strong dependency: 
Cointegration 

Weak dependency 

Consequences E(fatalities|exposure)= 

E(fatalities) 

Common components 
(same stochastic slope) 

Long-term linear 
relationship  

Log FATt = 
βLevel(logEXPt) + a +ct 
+ εt 

 

Model Univariate LLT  LRT with deterministic 
risk trend. 

By constraining β = 1 

LRT with stochastic risk trend 

Example Greece France  Slovenia 

Table 2: Types of cointegration for two time series integrated of order 1 and 2 
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3 MULTIVARIATE ANALYSIS 
In this chapter we discuss joint models of the evolution of the annual number of fatalities. 
Such models are available for the n=28 European countries. They are mainly LRT models 
relating the number of fatalities to the number of vehicles*kilometres through the risk 
equation. We have seen in the previous chapter that this is based on the observation that 
fatalities and exposure within are cointegrated many countries.  

It could be of added value to consider a panel of several countries to estimate models. In this 
case we can investigate whether either fatalities or exposure are cointegrated between 
countries. There are three motives for the implementation of such a “macro panel” approach: 

1.) Test the cointegration of different types of series (e.g. fatalities and exposure, or 
economic variables) on panel country data rather than on individual country data. The 
test is more powerful if we add a country dimension to the time dimension. Compare 
the structure of common factors between countries.  

2.) Study the structure of common components (e.g. fatality slope and exposure slope) 
between countries. As an example, the dependence between the number of fatalities 
and the number of vehicles kilometres could take different forms according to groups 
of countries. Is direct proportionality the rule? 

3.) Identify common developments. As mentioned in Koopman et al. (2007, p.93), in 
such models “ … some or all of the components are driven by disturbance vectors 
with less elements than the number of time series involved. The identification of 
common factors yields models which may not only have an interesting interpretation, 
but may also provide more efficient inferences and forecasts” (italics in the original 
text). This means there could be a number of prototypical developments (i.e. the 
factors) that play a role in many countries. Each country’s development can be seen 
as a combination of these factors, with factor weights determining how strongly the 
factor in question affects the development in that particular country. 

3.1 Macro Panel data 
As the country dimension is added, we could reduce the number of time points of the time 
series and work on a medium period of time such as a 20 years period (e.g. 1991-2010). 
This kind of data set is easier to provide and can still be considered a macro panel. 
Generally, we speak of a macro panel when we have few countries (the N dimension) each 
with many time units (20 or more). A micro panel, on the contrary, has a large number of 
units N (>100) and a small number time units (5 or less) and is therefore not suited to 
account for the complex time-related dynamics that usually govern time series. Note that, in 
the remainder of this section the subscript i will be used to refer to the country or N-
dimension units and the subscript t will be used to refer to time units.  

The statistical models are completely different for micro panel than macro panel data. With 
micro panel data, the time dimension is considered as a repeated measure with simple 
random structure and the N dimension is introduced through a random effect within a mixed 
general linear (or multilevel) model. It should be noted, however, that "The vast majority of 
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empirical research using 'macro panels' implements 'micro panels' methods!" (Eberhardt, 
2011) 

An important point is the nature of the time-series and in particular their order of integration. 
In our case, the time series of the number of fatalities1 yit are either integrated of order 2 I(2) 
(stochastic slope) or integrated of order 1 I(1) with a deterministic slope. Only for few 
countries (Germany, for example) the time series is stationary with a deterministic slope. The 
time series of the number of vehicle*kilometres xit are rather integrated of order 2 (stochastic 
slope) and mostly smooth trend (stochastic slope and fixed level). It causes a problem of 
heterogeneity and some solution could be to differentiate the time series to get the same 
order 1. 

 

3.2 Cointegration in panel and Common Factor models 
Remember the various possible cases of Table 1 when considering cointegration between 
time series: In case of I(1), it means that a linear combination of I(1) time series is stationary 
I(0). In case of I(2), it means that a linear combination of I(2) time series is either I(1) (noted 
C(2,1)) or I(0) (noted C(2,2)). There could be also the possibility of multicointegration when a 
linear combination of time series and differentiated time series is I(0).  

Besides, both intra- and inter-country cointegration deserve attention when working with 
macro-panel data. Intra-country cointegration means that the logarithms of the number of 
fatalities and the number of vehicle*kilometres of one country are cointegrated. There is a 
linear combination of both time series logyit - βi logxit which is rather stationary I(0) than I(1). 
The cointegration relationship could integrate a linear trend, which means that logyit - βi logxit 

-( ai + bi t) is I(0). This means that the combination of the two series is not stationary (i.e. 
does not have the same mean over the years), but follows a linear trend. We could be 
interested to test the homogeneity of the long-term relationship between fatalities and 
exposure and test if it is a risk type relationship (β = 1 for direct proportionality). 

Inter-country cointegration means that there is either a cointegration of the logarithm of the 
number of fatalities logyit - βij logyjt or of the logarithm of the number of vehicle*kilometres 
logxit - βij logxjt across countries. The inter-country cointegration allows for dependence 
between variables (y or x) from different cross section units (countries). We could be 
interested to test the homogeneity of the long-term relationship between fatalities and 
exposure and test if it is a risk type relationship (β = 1 for direct proportionality). 

Some interventions wit could be introduced. 

 

                                                
1 After a logarithmic transformation. i varies from 1 to n=28. 
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3.2.1 Estimation and test in case of I(1) 
A first method (residual-based approach or single equation) relies on the hypothesis of 
independence of the number of fatalities and of non cointegration between the exposures. 

In case of I(1), the equations are 

logyit =  ai + bi t + λi wit + βi logxit + uit 

logxit =  logxit-1 + εit 

With the variance-covariance matix of the residuals u and ε 

  

 

Here, the logarithms of fatalities logyit are expressed as a linear trend ai + bi t plus a number 
of (weighted) interventions λi wit, plus the regression on the logarithm of exposure βi logxit, 
plus the residuals uit. The index i indicates that each component is estimated for each country 
separately.  

There could, however, be a serial correlation ρi between the uit (short term dynamics). 

Therefore, the second model takes into account the cross section dependence (cointegration 
between countries' fatalities) and provides system estimators: 

logyit =  ai + bi t + λi wit + βi logxit + uit 

logxit =  logxit-1 + εit 

uit =  f't γi +  ξit 

With, 

  

 

This time, the residuals - uit – are expressed as a vector of common factors ft of size k<n. ft 
could be I(1) (common trend) or I(0) (common levels). If I(1), it could be correlated to logxit. In 
that case, logyit, logxit and ft are cointegrated together. 

A more complete model could integrate the cointegrations between the exposures, if any. 
The covariance matrix of the logxit residuals is not diagonal any more, and could be of lower 
rank than n. 

The estimation methods are based on weighted iterative regression of the differentiated 
variables ∆logy and ∆logx, with a determination of factors through a PCA or singular value 
decomposition on the residuals of the long-term equation. Another technique is to use an I(1) 
Vector Autoregressive (VAR) model. 
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The first task is to adapt the system of equations within a structural multivariate model (state-
space) by specifying appropriate structure for the variance-covariance matrices of the 
components, which is feasible as there is only one regressor variable, namely the exposure. 

 

3.2.2 Estimation and test in case of I(2) or mixture I(2) and I(1) 
The main problem is to extend the model to I(2) or a mixture I(2) and I(1) time series. 
Solutions exist such as an I(2) VAR model or an I(2) - I(1) transformation. We are in the 
domain of multicointegration. 

3.2.3 First attempt on two countries 
Consider France and UK from 1953-2010. The model form considered is: 

logy1t= a1+b1t+β1logx1t+μyt+ε1t

logy2t= a2+b2t+β2logx2t+��μyt+ε2t

logx1t= μx1t+ε'1t

logx2t= μx2t+ε'2t

 

 

Where the logarithms of fatalities are not only the sum of a country-specific linear trend and 
regression on the logarithm of exposure, but also have a component  that is common for 
both countries. The question is therefore: is it possible to estimate a model of this form for 
the fatalities in France and the UK? 

At first, we considered fatalities only (i.e. without regression on exposure and linear trend) 
and found France and UK to have a common slope. Moreover, with a fixed level component 
for France and a stochastic level component for UK.  

Once we introduce the regressors (exposures and linear deterministic trend), there is no 
common slope any more. The remaining trends for GB and France are random walks. But 
these levels are not correlated, so there is no common factor , but instead two local level 
trends for each countries. 

logy1t= a1+b1t+β1logx1t+μy1t+ε1t

logy2t= a2+b2t+β2logx2t+μy2t + ε2t
 

 

Concerning the logarithms of exposures logxt, the slopes are not correlated and the level is 
stochastic only for G-B (smooth trend for France). There are no common factors. Each has 
its own way. 

When we estimate the multivariate model with interventions (interventions not shown) 

logy1t= a1+b1t+β1μx1t+μy1t+ε1t

logy2t= a2+b2t+β2μx2t+μy2t+ε2t

logx1t= μx1t+ε'1t

logx2t= μx2t+ε'2t
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we introduce common slopes by making the fatalities dependent of the exposures, meaning 
a dimension 2 instead of 4 for the covariance matrix of the slopes. We opt for a diagonal 
matrix for the levels' covariances (no common factor at that level). We get, for the slope 
disturbance factor loading matrix (with a slight correlation of 0,5 between both exposures): 

                     LVKMGB    LVKMFrance 

LVKMGB           1.77        -0.28 

LVKMFrance     0.011       1.05 

which are the beta's, and: 

                  LVKMGB:    LVKMFrance:      LVKMGB:  LVKMFrance 

Constant    -0.06653    -0.05089               0.0000      0.0000 

 

which are the b1 and b2. 

 

Figure 1: Slopes of fatalites (LK) and exposure (LVKM)for Great-Brtitain and France. 

The slopes of fatalities are equal to: constant +betaF*slopeVKMF+betaGB*slopeVKMGB. 
For France, this is equivalent in percent to -5,09+1,07*slopeVKMK+0,01*slopeVKMGB. In 
France the number of fatalities is directly proportional to the exposure (pure risk model). The 
risk decreases by -5,1 % per year. 
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Both profiles are different, even if they are decreasing. In 2010, the slopes of the number of 
fatalities are equal to -10% for GB and -4,5% for France. 

Finally, if we restrict some factor loadings and the correlation between exposure slopes to 0, 
we obtain the required form on country exposures, with no common factor f (as we have no 
common level between the s) 

logy1t= a1-0,067t+1,44 μx1t+μy1t+ε1t

logy2t= a2-0,05t+1,05μx2t+μy2t+ε2t

logx1t= μx1t+ε'1t

logx2t= μx2t+ε'2t

 

 

We could go on and estimate such models with STAMP by adding other countries if their size 
is not too big. 

3.2.4 Discussion:  
The case of France and Great-Britain give us an opportunity to test the formulation of the 
macropanel model by means of structural models with trend components and apply such 
kind of modelling to assess the possibility of common factors. Unfortunately in this case, 
there are no common factors, because the exposures are not similar or correlated; neither 
are the risk levels. Nevertheless we have a tool to proceed for further multivariate analysis of 
the evolution of risks in European countries. 
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4 TWO SPECIFIC APPLICATIONS 

4.1 Disaggregation 

4.1.1 Risk and exposure within and between classes of road users 
Road-users are not exposed to an abstract risk on the road. Road users get killed in traffic,  
because of collisions of moving vehicles with objects along the road, with pedestrians or with 
other moving (or stopped) vehicles. How can we model such interactions between classes of 
road-users? Road-users can be classified by of age (sex), mode of transport (car, powered 
2-wheelers, etc.), and by type of collisions. 

Risk models definition: 

In case of single vehicle accident, the basic equation works 

fatalities = risk * exposure 

and can be applied to any road-user class. 

In case of pedestrian accident, the collision occurs between a pedestrian and a moving 
vehicle. The basic equation depends on the environment composed by moving vehicles 

fatalities(pedestrian) = risk(vehicle) * exposure(pedestrian) 

Risk(vehicle) on a particular network is a function of the flow of vehicles (if necessary 
classified by mode), which is characterized by a volume, a density and a speed, knowing that 
volume=speed * density and speed = g(density). Exposure of vehicles is equal to the product 
of the volume by the length of the network. Usually, the number of fatalities is not directly 
proportional to the volume, rather to a power α less than 1 

fatalities(pedestrian) = risk * exposure(vehicle)α * exposure(pedestrian) 

In case of two-vehicle collision, the basic equation is usually transformed to take into account 
the interaction by a product of exposures 

fatalities = risk * exposure(vehicle) * exposure(vehicle) 

Is it justified?  

In fact, if we distinguish vehicle 1 and 2, we have, by taking one vehicle as a moving 
obstacle: 

fatalities(vehicle1) = risk(vehicle2) * exposure(vehicle1) 

fatalities(vehicle2) = risk(vehicle1) * exposure(vehicle2) 

It depends on the form of the risk function. Suppose a dependence like in the pedestrian 
accident risk 

fatalities(vehicle1) = risk12 * exposure(vehicle2)α * exposure(vehicle1) 
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fatalities(vehicle2) = risk21 * exposure(vehicle1)α * exposure(vehicle2) 

If we sum, we get: 

fatalities = r12 * e2α * e1 + r21 * e1α * e2 

If α = 1 and r12 = p1 and r21 = p2, we get Koornstra's model (1973): 

fatalities = (p1 + p2 ) e1 * e2 

which becomes the basic interaction model if p1 = p2= r12 = r21= risk. 

Estimation 

Let us take three classes (young adult, adult, senior) and focus on single-vehicle accidents 
and accidents between two vehicles. 

On cross-section data, we start from a special symmetric contingency table counting the 
number of fatalities. 0 is a phantom vehicle implicated in single collision, 1 is young adult, 2 is 
adult and 3 is senior, d11 is the number of fatalities in collisions between young adults, d12 is 
the number of fatalities in vehicles driven by young drivers in collisions with adult drivers, and 
so on. S1 is the number of fatalities in single accidents (against phantom vehicles) and so 
on.  

 1 2 3 0 

1 d11    

2 d12 d22   

3 d13 d23 d33  

0 s1 s2 s3 0 

Total n1 n2 n3  

Table 3: Form of the contingency table. 

In Koornstra's model, one is free to use the single accident row with six unknown parameters 
called proneness p and exposure e by means of a Poisson model, or to ignore it. The 
exposure can be dependent on some values E like the population size for example. 

On longitudinal data, we start from the marginal counts of the total number of fatalities per 
class. The complete model can be written as: 

n1 =(r1 + r11 * e1α + r12 * e2α + r13 * e3α ) * e1 

n2 =(r2 + r21 * e1α + r22 * e2α + r23 * e3α ) * e2 

n3 =(r3 + r31 * e1α + r32 * e2α + r33 * e3α ) * e3 

The first consequence of this formulation is that the exposure for a group is not strictly 
proportional, but rather with an exponent greater than 1 (r1 e1 + r11 * e11+α  #  r'1 e11+β).    
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As the ni's depend on the ei's, the reciprocal is true. It means that there is a dependency 
between the ni's. So 

n1 =(r'1 e11+β)∗ f1(n1,n2,n3) 

n2 =(r'2 e21+β)∗ f2(n1,n2,n3) 

n3 =(r'3 e31+β)∗ f3(n1,n2,n3) 

if we suppose a multiplicative form for the fi's. Taking the logarithm, we end with the 
simultaneous equation model 

log(n1) = r''1+ (1+β) log(e1) + γ1 log(n2) + γ'1 log(n3) 

log(n2) = r''2+ (1+β) log(e2) + γ2 log(n1) + γ'2 log(n3) 

log(n3) = r''1+ (1+β) log(e3) + γ3 log(n1) + γ'3 log(n2) 

This set of equations justifies the use of a multivariate structural model for the reduced form 
of the number of fatalities according to 6 classes of age as presented in the note (Lassarre, 
2012). And we expect a correlation between the unobserved components and the existence 
of common factors because of these dependencies through the exposures, which are too 
complicated to model directly, but could be subsumed via some common factors.  

 

4.1.2 Disaggregation by age group for Spain 
We consider six age intervals: 0-14, 15-17, 18-24, 25-49, 50-64, 65+ over a period of 20 
years from 1991 to 2010. We estimate a multivariate structural model with 6 equations 
relating, for each age interval, the logarithm of the number of fatalities to the logarithm of the 
size of the population plus a stochastic trend.  

The univariate models are smooth trend models with fixed level and stochastic slope. There 
are common slopes, maybe 2 or 3. One common slope is not sufficient. With 3 common 
slopes, the model becomes unstable. With 2 common slopes, the log-likelihood, equal to 
230, is minimized. We keep as common factors the two intervals 25-49 and 65+. The trend 
for the other classes is a linear combination of these two. 

 

 25-49 65+ 

0-14 0,27 0,66 

15-17 2,40 -1,25 

18-24 1,27 0,11 

50-64 0,46 0,65 

Table 4: Slope disturbances factor loading matrix. 
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The trend for the 18-25 is similar to the one of the 25-49 age group. The trend for the 50-64 
depends more on the 65+ trend than on the 25-49 trend. 

The dependence on the size of the population varies according to the age intervals. It is 
significant only for the 15-17 and 65-+ with an elasticity of 1,9 and 2,9, respectively. 

 

 coefficient t-value 

0-14 -0,17 -0,49 

15-17 1,86* 2,46 

18-24 -0,64 -1,31 

25-49 1,24 1,82 

50-64 -0,88 -1,63 

65+ 2,86* 2,77 

Table 5: Regression coefficients and t-values on population size for the different age 
intervals (significant coefficients are denoted by a star). 

 

All the trends are decreasing, because the majority of the slopes have negative values, with 
two leading patterns given by the 25-49 and 65+ age slopes (Figure 2). The risk has 
increased in the recent years for the elderly and for children. It has decreased, however, for 
the 15-17. 

 

 

 

Figure 2: Risk slopes for the different age classes 

 

The population size is decreasing for young people between 15-17 and 18-25, increasing for 
adults and the elderly and follows a U shape for children between 0-14 (Figure 3). Only the 
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15-17 and 65+ regressions are positively sensitive to the evolution of their population size 
(Table 5). Deterministic trends could be considered for these two age classes: downwards 
for the 15-17 and upwards for the elderly. 

 

 

Figure 3 : Population sizes (log scale). 

 

The mortality trends have three patterns: regular decrease for 0-14 and 65+, decrease with a 
plateau for 18-24, 25-49 and 50-64, plateau ending with a sharp decrease for 15-17.  

 

 

 

Figure 4: Levels of the mortality trends for the different age categories (log scale). 

 

At the end, the composition of the regression effect of the population size (a kind of 
deterministic trend) and of the trend due to the stochastic slope leads to the development of 
the number of fatalities. Some evolutions are more pronounced than others: weak for elderly, 
strong for the 15-17 (Figure 5). 
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Figure 5: Trends and observed values (log scale). 

 

4.2 Discussion:  
The analysis has revealed the presence of two common patterns chosen to be the adult and 
senior classes of age, which structure the evolution of the number of fatalities. Furthermore 
only three classes of age are positively sensitive to the evolution of the population: the 
teenagers, the adults and the seniors. The evolution of mortality is not homogeneous among 
the classes of age, but not totally heterogeneous and combines the effect of population sizes 
with two specific stochastic trends. 
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5 GDP / FATALITIES MODELS 

5.1.1 Introduction 
Microscopic or occasional changes in economic indicators, interrupting the smooth 
macroscopic trends, may be associated with road safety changes. Studies on the effect of 
the global petrol crisis (Tihansky, 1974) in the early seventies on the development of fatality 
numbers yielded to the conclusion that the reduced speed limits introduced by the 
authorities, along with more cautious driving by an energy-conscious public have contributed 
to striking declines in fatalities The economic recession of the early-eighties has been 
studied by several researchers with respect to its effects on road traffic fatalities (Wagenaar, 
1984; Hedlund et al. 1984; Reinfurt et al. 1991). Recently (2008 onwards), road traffic 
fatalities have exhibited important reductions in several countries. These reductions may not 
be the sole result of increased efforts in terms of road safety policy efforts, might be partly 
attributable to the recent global economic recession and its effect on mobility. 

5.1.2 Model 
If we limit the time period to 20 (or 30, at most) years, the hypothesis that the number of 
fatalities is I(1) integrated of order 1 (plus a deterministic linear trend) is acceptable. For a 
longer period, the series is rather I(2) integrated of order 2. The GDP is I(1) integrated of 
order 1, if we take the real GDP deflated by the price or inflation rate. Otherwise, the nominal 
GDP is I(2) integrated of order 2. So, we could start the modeling inside the I(1) cointegration 
framework. 

One way to explore the relationship is to associate annual changes in the Gross Domestic 
Product (GDP) with the related annual changes in the number of road traffic fatalities. It is an 
exploration of the short term relationship between the number of fatalities and the GDP 
through their relative rates of change by using the difference of the logarithms (Yannis et al., 
2012). 

5.1.3 Results 
Data for 27 European Union countries have been extracted from the IRTAD database (1975-
2010). The dependent variable is the annual percentage change in the fatality rate, the main 
explanatory variable is the annual percentage change of GDP per capita. A mixed effect 
modelling technique has been applied with a logarithmic form of the model with fixed effects 
by groups of countries (Northern, central, southern) and a random effect with an 
autoregressive covariance structure to capture the time series residual effect. A distinction 
has been made between the effect of increases and of decreases in the GDP. These effects 
are supposed to be common to all countries. Both elasticities are significant +0,2 for an 
increase and -0,34 for a decrease (Table 6). A statistically significant relationship between 
annual GDP increase and fatality rate increase was established. The relationship between  
between annual GDP decrease and fatality rate decrease was also significant. Particularly in 
Northern / Western European countries, a decrease of GDP is associated with a decrease of 
the fatality rate for the year the GDP decrease occurred, but also one year later. 
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Fixed effects Estimate T p-value 
Intercept -1,244 -5,983 0,000 

[COUNTRYg=Central/Eastern] 0,782 2,530 0,012 

[COUNTRYg=Southern] 0,333 0,850 0,396 

[COUNTRYg=Northern/Western] 0a . . 

GDPincrease 0,207 2,979 0,003 

GDPdecrease -0,336 -2,970 0,003 

[COUNTRYg=Central/Eastern] * GDPincrease -0,144 -1,704 0,089 

[COUNTRYg=Southern] * GDPincrease -0,015 -0,110 0,912 

[COUNTRYg=Northern/Western] * GDPincrease 0a . . 

[COUNTRYg=Central/Eastern] * GDPdecrease 0,230 1,931 0,054 

[COUNTRYg=Southern] * GDPdecrease 0,062 0,268 0,789 

[COUNTRYg= Northern/Western] * GDPdecrease 0a . . 

Random effects Estimate Wald Z Sig. 
AR-1 4,826 19,786 0,000 

 
 

Table 6: Estimates and t values for the short model based on the differences of logarithms. 

 

We can go one step further by combining the short-term relationships between the first 
differences 
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with a long-term relationship between the levels (cointegration) 
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by means of an Error correction model (ECM) for example, to grasp the total dynamics 
between the fatalities and GDP time-series. 
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In fact, we start to explore the long-term relationships with some classical models, such as 
the Augmented Mean Group model, which introduce two variables in the long-term 
regression: the mean values of the logarithms of the number of fatalities and GDP. These 
variables play the role of possible common factors. Furthermore, we suppose that the beta 
coefficients, the elasticities, take different values according to countries, which is a more 
admissible hypothesis. 
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MG   

(lFAT) coef z-test 

lGDP 0.74 23.07 

   

CCEMG Pesaran  

(lFAT) coef z-test 

intercept 1.266 1.4 

lGDP 0.458 2.23 

t 0.018 0.015 

lFAT2 0.928 5.57 

lGDP2 -0.971 -2.51 

 
Table 7: Parameters estimates for the long-term models. 

 
The mean elasticity is significant and equal to 0.46. The mean value of the coefficient of the 
linear trend is null. The added mean variables are significant (Table 7). The distribution of the 
elasticities shows that for most countries the elasticity does not differ from zero, except for a 
dozen of countries (UK, FR, NL, DK, PL …) for which it is significantly positive. The elasticity 
is negative and significant for CZ only (Figure 6). 
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Figure 6: The distribution of the elasticities according to the P-value. 

 

5.1.4 Discussion: 
Short term elasticity of GDP to the number of fatalities is different and smaller from long term 
elasticity. Both elasticities are positive and less than 0.5. In fact there is a strong 
heterogeneity between countries. The majority of countries does not show any relationship 
between GDP and the number of fatalities. Having a relationship appears only for a set of a 
dozen of countries with an elasticity around 1. This phenomenon needs further examination.  
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6 CONCLUSION 
This is an exploratory analysis on the possibilities of multivariate analysis of the number of 
fatalities over a panel of countries. Statistical techniques appropriate for such macro panel 
data have been presented and tested successfully on three cases: a disaggregation of the 
number of fatalities by age on six classes on a specific country, a cointegration study of risk 
and exposure on two countries, and an exploration of the relationships between fatalities and 
GDP on 30 countries. 
 

The next step is to improve the multivariate model relating GDP to the number of fatalities. 
Some interventions related to road safety national measures have to be introduced and the 
deterministic trends have to be monitored on the basis of the results of univariate models 
coming from earlier results in DaCoTA. The question of sensitivity of road mortality to GDP 
has to be studied in relationships with the influence of GDP on mobility on one part and on 
the risk in other part. The second step is to introduce some identified common factors in the 
models instead of one or two "proxy" common factors by making some principal components 
analysis to detect some common patterns. It will pave the way for the development of a 
multivariate model of the number of fatalities for Europe that will provide clusters of countries 
according to their specific dynamics and development of risks and exposures through the 
development of a multivariate structural model with common factors.  
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